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Computational approaches for small molecule drug discovery

Introduction: computers and drugs

- Introduction
- The problem: the art and science of making drugs
- A quick history of computational drug discovery

The “classic” era: task-specific tools and models

- Single task focused methods
- Breakthrough in protein structure prediction: the road to AF2 and beyond
- De-novo molecular generators

The new era: foundation models trained on black box data - Neo and beyond

- Neo-1: unifying all-atom structure prediction and de-novo generation for the first time
- The promise of black-box data & Neolink
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Who are we?

Luca Naef Vladas Oleinikovas
CO-F(():L_JI_nOder & Director of Comp Chem

*BSc/MSc ETH Zurich - Molecular Bio & Deep
Learning

* Research in Stanford, UNSW, TokyoTech

* Software Engineer & first tech startup during

« BA/MSci Cambridge - Nat. Sci. /Chem.
* PhD UCL - Chemistry
*Senior Scientist at UCB Pharma

BSc * Acting Head of CADD at Monte Rosa Tx
* Diverse roles in Biotech - Regeneus (AUS), CJ » Co-inventor of clinical VAV1 degrader
Partners (JPN)

*Joined VantAl in 2024

*QuantumBlack & McK - Al in Drug Discovery
across Fortune 100/500

» Co-founded VantAl in 2019
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Finding new medicines is hard

N.I _3 B Cost to find a new drug'

9 O + % Chance of failure after entering human trials”

-I 3 + y rS Typical development after cause of disease identified

1. Estimates vary - e.g. from 0.88B (Eastern Research Group, “Drug Development Final Report”, Sept.
2024, for U.S. Department of Health and Human Services) to 2.6B (DiMasi et al., J Health Econ 2016)

4 2.Smietana et al., Nature Reviews Drug Discovery, 2016 VA N T A I

3. Paul et al., Nature Reviews Drug Discovery, 2010
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ANnd has been getting harder

) . . 5 . I
Moore's Law: Transistors Eroom’s Law: Medicines
1E+13
- 2
1E+11 £
1=
1E+Q9 400 0° §_
1E+07 a 100
B iad [+ 4
1E+( 3)’
S
1,000 c
] — _
5 1o v\
O 0 /‘\. \ "
~ a \ - \ /-\\
0.001 S NN
S 1 v \\
TE-05 ‘6 V/\’\/
5] N
Q
£
1E-09 *
Z 01
1 1 (0] 1 ( 19¢ 19 ] 1 2000 ) ) 195( ) ) (0] 19 ) (

. . VANTAI



Goal: Rational Drug
discovery

Precision
nano-engineering
of therapies

\ 0.15 nm
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This is, by no means, a new idea!

* Medicinal Chemistry Dy
! Pharmacology Department.

Hitoshi Oinuma,*' Kazutoshi Miyake'

Motosuke Yamanaks,' Ken-Ichi Nomoto*

Hiroshi Katoh,' Kohel Sawada®

Mitsumasa Shino,’ Sachiyuki Hamano

Tsukuba Research Lab ies

Eisai, Co,, Ltd.
5-1-3, Tokodai, Tsukuba, Ibaraki 300-28, Japan
Received August 24, 1989

Neural Networks Applied to Structure-Activity
Relationships

64’ 871 82°

QSAR Models via regression: Captopril: first “rational” Early Docking tools:
structure-based Drug
Corwin Hansch and Toshio approved in 1981 DOCK, Irwin D. Kuntz
Fujita

920’

NN for QSAR. Toshihisa
Aoyama et al. (J. Med.
Chem., 1990)

The computer program LUDI: A new method for the de novo
design of enzyme inhibitors
Hans-Joachim Béhm
BAN 4G, Conirw Revooeck, 16 W) Lofurgabagion llermany
Reovoived 37 May 191

Acceoted 16 Augast 1991

Ky wovsdy: Fasywess, Exayme inhilitises, Melecudas medebng Drug design, Do sove design

A

92’ 95’

“De-novo” generative method Computational modelling
via rules-based fragment drives new class of anti-
assembly. Boehm, 1992, Journal HIV drugs: saquinavir
of Computer-Aided Molecular (approved 1995) indinavir
Design (1996), ritonavir (1996), and

nelfinavir (1997

2015

AtomNet.

Abraham Heiftes &
Izhar Wallach. First
CNN for docking
rescoring

2020

Exscientia & DSP
launch first Ph | of
Al de-novo
designed drug

2024

Generations

Insilico Medicine
announces first-in-
class fibrosis drug

(TNIK inhibitor
INSO18_055) to reach
Phll
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Gty T'he Blumenthal Revival at Burroughs
Bold Departures in Antitrust

Bunker Hunt's Savvy Sister t@ber5‘ 1981

1981

A
A %
' BNy o gy
P o e I I $ - &-

&.g\ <\ o ; A
DESIGNING DRUGS e TN
WITH COMPUTERS US

Devigning drugs by computer at Merck
DISCOVER / AUGUST 1981

Xu, The path to the next computational transformation of
drug discovery, Medium, 2022
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However, we should not forget that irrational drug discovery
IS incredibly successful

It was a matter of life or death — a matter of
survival. | don’t believe we really had a clear-cut
strategy. We were simply doing whatever we
could, and there weren’t many things that we
could do then. We didn’t have much money and
] there were not many researchers. We had to make
haloperidol a lot of simple compounds as quickly and possible
1958 and screen them using very simple methods”

Paul Janssen

0 VANTAI



The classical modelling tools focus to solve one task

Structure
+ Molecule/

Monomers

» ;;: ‘w/ 1 4

il

Small molecule docking

Protein-Protein
Docking

Molecule

Complex

docking: sampling + scoring

- Optimized to solve one task efficiently, eg.

- Relies on specific (often rigid) input, that may be

prohibitively expensive (eg. X-ray structure) and

limited by applicability

VANTAI



The classical modelling tools focus to solve one task

Structure
+ Molecule/

Monomers

12

Small molecule docking

Protein-Protein
Docking

Molecule

Complex

+ Scaling with Moore’s law:

- Optimized to solve one task efficiently, eg.
docking: sampling + scoring

- Relies on specific (often rigid) input, that may be
prohibitively expensive (eg. X-ray structure) and
limited by applicability

¥ run more iterations, larger libraries / systems

sampling limited by inputs (esp. receptor flex.)

VANTAI



Complex methods limited to sequential combination of tasks

A Proten-protein docking with Ros B Generating linker conformers

\ arhead for
»‘g’t | T gt protein
R\,

e

- & LS A A "
t D& &
7 N N o
aJl U g 2
g ) (
\ Y ] === E3rgase ipend

Target Preparation Docking

5 supported backends
fully parallelized

» - ‘ :
- 2 Bl g ¥ «  different write-out modes
S ) ; *  H-bond / core constraints DockStream
~" CCDCGOLD ™

Ligand Embedding / AutoDock Vina

Schrédinger Glide

; OpenEye Hybrid

Sy
T — €
(?’ rDock

tautomers / protonation states IR it i
SMIRKS application
stereo-chemistry i

Bulding complete
PROTAC

https;//github.com/MolecularAl/DockStream
https://pubs.acs.org/doi/10.1021/acs.jcim.0cO145] Figas 1 ety of Ok el st
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There's broadly two flavors of machine learning that are used

Discriminative Generative
Molecule Property Property Property
w biroZvaiIabiIity? F% @ F% @ ?n t;ilcéi\;?élable w
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Two methods have been particularly critical
iNn the emergence of generative methods

Language models

- Trained to predict token: either next token (e.g. ChatGPT,

“autoregressive”) or some masked tokens in middle of
sequence (e.g ESM3)

- Breaks down problem into simpler steps: one token at a time
- Tokens require discrete data

- Became SOTA for language ~= with GPT-1in 2018

Diffusion models

Forward diffusion

p ————- » d p ———--
q(Xe[Xes)

# X1 X

Po (¥e1[Xc)
————— < <+ < c————

Reverse Diffusion (Model)

- Trained to remove simple noise added during training process

- Breaks down problem into simpler steps: only predict ”a bit” of

noise — makes problem easier since e.g. high and low noise steps
often very different problems

- Usually used for continuous data: images, coordinates,

expression levels, ...

- Usually a lot more fancy math and many extensions (Flows,

Schrodinger Bridges, ...)

- Became SOTA for images ~= with ADM in 2021

AVINNRWAN
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Diffusion: A breakthrough approach
for generative modelling

- Recent breakthroughs leverage Diffusion models

- Inspired by physical diffusion processes (brownian motion)

- Unsupervised training - stepwise noise addition to ground truth
- Model learns going from noised sample to ground truth

- Noise depends on problem at hand - Gaussian noise on pixels,
latent noise or more complex (SO(3)-subspace diffusion)

@ openAl

DALLE 3 wonns  Imagen

Generative Adversarial Networks
(2015)

Images of flowers

-
A
L re —

° %

”

GANs & Roses

Diffusion Models
piople)

“Show a molecular glue holding
together two planets ”

VANTAI
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Diffusion Models are trained unsupervised by adding noise
to training data and predicting ground truth

Forward diffusion

Reverse Diffusion (Model)

Diffusion probabilistic models - Jascha Sohl-Dickstein, Google Brain Talks
https://www.youtube.com/watch?v=XCUInHP1TNM

Generative Modeling by Estimating Gradients of the Data
Distribution. (NeurlPS 2019} by Yang Song, Stefano Ermon
Y g g

VANTAI



In mMolecular modelling, "noise” can be added in highly flexible ways

Forward diffusion

e > — P e »>
Noise types
q(xe[xc1) « Example: SE(3) diffusion
& . ' (rotation, translation):
P & e A [3 " :
Ground ok P <d v 3 Noise DiffMaSIF
i R Win
Truth TC3 T =P « Euclidean diffusion:
X0 xr ApolloDiff

e Latent Diffusion:
LatentDiff

Reverse Diffusion (Model)

" Sk gt L L e VANTAI



Why use Diffusion for structure prediction problems?

Apart from the fact the protein structures are not static,
Regression models (e.g. AF2) have a major issue

Regression Model

Regression Model
(Output)

Ground Truth
(intermediate)

High likelihood High likelihood
of contact of no contact

a2

‘ Pairwise-Distance

. UGS
'l 1 } N e A
J A - ' ]
Log-Likelihood

VANTAI
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Al iIs generally used to predict one or multiple
of the following given one or multiple of them as input

Sequence Structure Property

Kinase

Early ML methods mostly followed the classic methods focusing on the same tasks
following the same limitations...

20 VANTAI



This has led to a large "Zoo" of models in use

Sequence

lVLGREDAHFIYENKDVSQ...

Monomers

i

Structure

4%

Sequence

‘RLQLVQ
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Folding

Protein-Protein
Docking

Inverse folding

Cofolding

Structure

4%

Complex

o % =

Sequence

((MGRLOLVVLGREDAHFIVENKDVSQ...

Structure
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Structure
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Small molecule
generation

Small molecule
docking

QSAR/Property
Prediction

Synthesis
prediction

Molecule
ﬁé‘%@”
« P2 *((d
b

Molecule
N3
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g
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Property

logP @

Synthesis

A+B+C= =y
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Breakthrough: Protein folding

Sequence

PN P13 protein
2 ":'--L)
= i v
) L———
p— A £ P Ve
p [ =
\ | \ Yo
- [ { u/
Y . { . Ty
b |
= ’(}\ ' 4 1‘ ee
(Fre) (i 5. Tertiary structure hemeslobin
~ - R Three-dimensional structure
(ot 7, N
"‘ Alpha helix 4
1 -

Primazy structure
Amino acid sequence

Secondary structure
Regular sub-structures Quaternary structure
i S

Complex of protein molecule:

22

Folding

A protein’s structure
is uniquely determined
by its sequence

“Anfinsen’s Dogma”
- 1972 Nobel Prize

Structure

VANTAI
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Crystal

f it
0

X-ray crystallography

Diffraction Electron
pattern density map

X-rays fitting

Up to 1 M USD
Can take Y€aAIl'S

Traditional route:

Atomic model

VANTAI
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AF2 was an “AlexNet” like moment

ImageNet classification top-5 error (%)

309 585
25
20 -
15 -
10
5 -
ILSVRC
2010
NEC
America

25.8

16.4

ILSVRC ILSVRC
2011 2012
Xerox AlexNet

11.7
7.3 6.7
5.1

LSVRC ILSVRC ILSVRC
2013 2014 2014

Clarifi

VGG GoogleNet

Human ILSVRC
Performance 2015
ResNet

Median Free-Modelling Accuracy

1CC

60

GDT

§ N
o

~

2

CASP7 CASP8 CASP9
20086 2008 2010

0 IIII

CASPI10
2012

CASP

CASPI

2014

CASP12
2018

o

ALPHAFOLD 2

ALPHAFOLD

CASPI3

2018

CASPI4
2020

~

Amy Lu, BIOE 145/245: Introduction to Machine
Learning for Computational Biclogy,Spring 2024
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25

Proteins are polymers comprised of amino acids

A Chain

Backbone Side chain

Amino
| / Amino acid 5

P el (pan (Gin s (Lo (Cys (i (Ser (s (Lo { v (G (i (Lo v L (V0 (O

8 Chain

>UniRef90_P02057 Hemoglobin subunit beta-1/2 n=6
Tax=Euarchontoglires TaxID=314146 ReplD=HBELRABIT
MVHLSSEEKSAVTALWGKVNVEEVGGEALGRLLVVYPWT
QRFFESFGDLSSANAVMNWKVKAHGKKVLAAFSEGLSHL J
DNLKGTFAKLSELHCDKLHVDPENERLLGNVLVIVLSHHFG Amino acid 4
KEFTPQVQAAYQKVVAGVANALAHKYH acid 2

Amy Lu, BIOE 145/245: Introduction to Machine
Learning for Computational Biology,Spring 2024

* We usually split
structures in backbone
(mainchain) & sidechain

* Backbone structure
often assumed +/-
independent of specific
sidechains

* E.g. for protein design:
often design backbones
and then predict
different residues that
could take this shape

VANTAI



However, technically AlphaFold2 doesn'’t fold protein sequences,
It predicts structures based on Multiple Sequence alignment

1ns m 125
t p—
it e EEEREEERENEEFENEEEE

Inp
sequen

Query for similar
sequences

ns 1 125
soece: AHEANEAERE - AH - FEEEEE
soerces. AHEHEENERE NN EERNEEE
MSA  sqeec HEHEENENEHH EEEEES
serce [HAHEEREEESH-EERERE
Secuerce € (I O O I O O O
sowce [HHEEEENEVENEEENEE
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MSA gives us co-evolution

Residue pairs that co-evolve (e.g charge
switch on one always observed with
opposing charge switch on other) are
likely in contact

Often ignored: it’s also a form of RAG
(retrieval augmented generation) - giving
large number of sequences that likely fold
into same structure makes sequence-
based fold retrieval more robust

VANTAI



N fact, co-evolutionary information is absolutely critical

0.88
MSA
0.41
i
Single Seq.

AF2-MSA AF2-SS

Source: Zeming Lin
etal., 2021

27

AF2 PINDER performance by MSA depth Notes:

* For both monomers and

protein-protein interfaces, MSA

are absolutely critical
=== Qracle == Top 1

801 information
= 78 « While current language models
il such as ESM3 have been shown
B 74 to learn the pairwise residue
@ 72 covariance implicitly, despite
S 7] 100B+ they still underperform a
e eE sequence alignment

66 1

100 200 300 400 500 600 700 800 900 1000
Max Ngg

Source: Kovtun et al.
PINDER, 2024 (VantAl)

VANTAI



AF2 is a model that uses sequence and co-evolution
to predict a protein’s structure

- > el ll bl
25 4184 14
— B — <ttt
search ok, 5 A S S AL
\YSYAN
o)
prrT Ut
Input sequence A F 2
K
\__, Structure _____ g
database
search
Templates

28

High

confidence

Low
confidence

3D structure

VANTAI



It uses a transformer inspired architecture
to first process sequence & MSA features
and then reason over coordinates

Invariant “Encoder” Invariant “Latent Repr.”
- > § T L tritlit Ty
. ) o r conridence
_ L P ; -_'_ |, SEmEed -
dc;?;‘te);fe & d Lt A a r h | @ I | confidence
search ey by A S L & & -
MSA ¢
$3 A¥s
BALERE: Evoformer Structure o 3D
Input sequence (el (8 blocks) > A , 3] Geometry!?

|

N (Paiing ——» 3

3D structure

— i+ — ion T

/<.': A !

6 12X
Structure
database
search

Templates

v
; .
~— | <«— Recycling (three times)

Invariant Input
Features
Equivariant* “Decoder”

2 VANTAI



Critically — AF2 is an “engineering marvel” with many, many

performance critical innovations

With self-distillation training =
Baseline -
No templates =

No auxihiary distogram head =
Noraw MSA |
(use MSA pairwise frequencies)

No invanant point attention _|
(use direct projection)

No auxiliary masked MSA head =

No recycling <
No triangles, biasing, or gating |
(use axial attention)

No end-to-end structure gradients _|
(keep auxiliary heads)

No invariant point attention and _J

no recycling

Test set of CASP14 domains

Test set of PDB chains

T L
" . G
2= . ¥
= «°
— M
T T T T T T T
-20 -10 0 -4 -2 0 2

GDT difference to baseline

IDDT-Ca difference to baseline

VANTAI



De-novo molecular generators for variety of use cases

Example use-cases

for Proximity Modulators: Generative Algorithms Scoring functions
p
.( De-novo AT I:] Q
" generative Diffusion/Flow Matching |
1 . binder or l ER)KI Probabilistic Models A O Sep2eEEse
/ glue design -
(/’ \\“ r
¥ -\ Generative —4? LLMs + Free Energy
( ‘ / Linker Design RL/RLHF & interaction-based
1 ,v}
(, & Genetic algori ﬂ_7
: . gorithms .
50} (LSenderatlve ®(---® or search-based » QDME/PK lassifi
‘ ( s 2 -—--2 generative methods ey deesig

AVINNRWAN
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De novo design of proteininteractions with
learned surface fingerprints

MaSIF & dMaSIF have been highly

successful for protein-design applications

https://doi.org/10.1038/541586-023-05993-x  Pablo Gainza**"*", Sarah Wehrle'*", Al dra Van Hall-B is**"", Anthony Marchand™*",
. Andreas Scheck'™", Zander Harteveld'’, Stephen Buckley'?, D hun Ni**, Shuguang Tan®,

Received: 16 June 2022 Freyr Sverrisson'”, Casper Goverde'~, Priscilla Turelli®, Charléne Raclot®,

Accepted: 21 March 2023 Alexandra Teslenko’, Martin Pacesa"’, Stéphane Rosset'”, Sandrine Georgeon',

Published online: 26 April 2023

Open access Michael Bronstein” * & Bruno E. Correia'

Check for updates

Relative RU (%)

100
/,-
ba DBR3_03:
K, = 80 nM
90 p = DBR3_02:
/ Ky = 4.6 uM
_,"' Native scaffold
o . DBR3_03 KO

Jane Marsden'?, Aaron Petruzzella®, Kefang Liu®, Zepeng Xu®, Yan Chai®, Pu Han®,
George F. Gao”, Elisa Oricchio®, Beat Fierz', Didier Trono®, Henning Stahiberg™,

10° 10® 10:7°10°6 105107
Concentration (M)

I DBR3_08 cryo

M RBD cryo

DBR3 03 AF.model -l RED AF model

VANTAI



33

A variety of generative algorithms have been used,
usually split into 2D or 3D representations

Generative Algorithms

AN
Diffusion/Flow Matching
{(Rf Probabilistic Models
P e

| v 20
 cciopen

3D

Genetic algorithms

@(--9 or search-based
(----2 generative methods

VANTAI
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Classical approaches: rule-based (iterative) enumerators

database ol erchangeable

https://github.com/ci-lab-cz/crem-dock

Molecules to grow

IS
CReM v

fragments

Physicochemical
properties

CReM DB fragments

—

RMSD / PLIF

* greedy
* Pareto
* clustering

AVINNRWAN
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A variety of generative algorithms have been used,
usually split into 2D or 3D representations

)CN

3D

2D

L) (L)
[{ETR I |

—

(L) _(P)
p(~, 1‘~r +Zdata)
_—

— 88—

, Charles Harris, Yuanqi Du, Kieran Didi, Arian
MWWMWMM&MWM ArXiv, 2022

S SMILES from ChEMBL 1
Graph: o ! NH |

[ . :
1 Prior network Scoring function

SMILES: |

Augmented Likelihaod +——

Oune-hot

encoding:

Update Agent
Likelihood

!
oS S e tPYT po% D s PR Pl
Generate sequences P |

Initialize Agont —» Agent notwork | o — — —#  SMILES strings

, while 0 peactice a

F-g 4 The Agent. Hlustration of howr the mode! is constructed, Starting from a Prior network trained on ChEMBL, the Agent is trained uting the
s present in the trairing

mrch larger -oqnu lary th e likeliho nh the SMLES generated

data Is used

Molecular de-novo design through deep reinforcement learning
Marcus Olivecrona, Thomas Blaschke, Ola Engkvist and Hongming Chen. J Cheminform (2017)

VANTAI


https://arxiv.org/search/q-bio?searchtype=author&query=Schneuing,+A
https://arxiv.org/search/q-bio?searchtype=author&query=Harris,+C
https://arxiv.org/search/q-bio?searchtype=author&query=Du,+Y
https://arxiv.org/search/q-bio?searchtype=author&query=Didi,+K
https://arxiv.org/search/q-bio?searchtype=author&query=Jamasb,+A
https://arxiv.org/search/q-bio?searchtype=author&query=Jamasb,+A
https://arxiv.org/search/q-bio?searchtype=author&query=Igashov,+I
https://arxiv.org/search/q-bio?searchtype=author&query=Du,+W
https://arxiv.org/search/q-bio?searchtype=author&query=Gomes,+C
https://arxiv.org/search/q-bio?searchtype=author&query=Blundell,+T
https://arxiv.org/search/q-bio?searchtype=author&query=Lio,+P
https://arxiv.org/search/q-bio?searchtype=author&query=Welling,+M
https://arxiv.org/search/q-bio?searchtype=author&query=Bronstein,+M
https://arxiv.org/search/q-bio?searchtype=author&query=Correia,+B

SMILES is a string representation of a molecular graph which allows
standard LLM tokenization approaches

A <
N OH
2D HNCNMO
F
, <
/\
T\_/ ‘2

" P .
A\ [ snrEs from cuener, |
\ ) . J
N=/
——‘( Prior network } Scoring function }
A : Likelik d \

Update Agent
Likelihood

Initialize Agent —+  Agent network | SMILES strings

Fig.4 Tre Agent

i tructed, Starting from a Prior network trained on CREMBL the Agent is trained using the
avamented likelihood of the SMLES generated

Molecular de-novo design through deep reinforcement learning
Marcus Olivecrona, Thomas Blaschke, Ola Engkvist and Hongming Chen. J Cheminform (2017)

D

N1CCN(CC1)C(C(F)=C2)=CC{=C2C4=0)N(CICCI)CCAC(=0)O
T T a0

* SMILES (Simplified Molecular Input Line Entry System) is a depth-first linearized representation of a molecular graph (i.e. converts [cyclic]
graphs into a linear sequence of characters expressed in ASCII

* ASCIl symbols can then be encoded as in classical LLMs

» Many early RNN-based systems such as REINVENT (AstraZeneca, 2017) which tie SMILES-based LLMs to a learnable reward via RL
(REINFORCE) are still competitive today

36 VANTAI



3D-based models still struggle to produce valid molecules

Conditional (2jjg) Inpainting-Ca (2jjg) Reference (2jjg)

* Strained bond angles

* Highly strained or overextended

rings
- - ( [ * /7 N
¢ /)\\,A/K \ ) W . = 7 * Disconnected aromatic bonds
Vina: 85 Sim: 027 Vina:-6.7 Sim:0.24 Vina: -668 Sim 021 Vina: -6.5 Sim:0.27 Vina -63 Sim: 0.19 Vina. -64 Sim: 019 Vina: -59 Sim: 1
QED: 049 SA 043 QED:0.63 SA 035 QED:0.54 SA 027 QED:044 SA 029 QED:053 SA 035 QED:0.21 SA'035 QED 056 SA:078 * Large bent overall molecular
- shapes
Conditional (3kc1) Inpainting-Ca (3kc1) Reference (3kc1)

* Many methods are still in the
\ “6-Finger phase” of generative
models

* Whether same recipe from

’ y v .
&}4 %i%{\\ X W e );( { - @ I~ LY image world (larger models,
N ' \ ) . .
: 5:( : B Q more data: scale) will suffice or
Vina: -8.1 Sim: 044 Vina:-7.2 Sim: 0.50 Vina: -85 Sim: 0.40 Vina:-6.9 Sim: 040 Vina:-69 Sim:0.32 Vina:-64 Sim: 0.23 Vina: -6.5 Sim: 1 If eXp“Cit inductive biases WI”
QED: 0.70 SA:045 QED:065 SA 045 QED:0.63 SA:0.35 QED: 0.15 SA:0.36 QED: 067 SA: 027 QED:0.45 SA:0.40 QED:0.72 SA:066 R .
be required remains to be seen

37
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The big breakthroughs in Al have been
driven through ever more general models

GPT-"Omni” - all-to all: text,
image & voice input & output

Text-generation
& image input

Text-generation

" ’ GPT40
’ GPT4V

GenO Gen1l Gen 2
2020 2023 2024

VANTAI



Current Bio Al models, in contrast, still consist of a large number
of specialist models

Sequence
. Folding
M%?omers ] Protein-
2 Zap Protein
3 -.,%/ Docking
Structure
~ Inverse

% p AN folding
7

Sequence

7 MGRLGLVQ Cofolding
¢ ccloeN

39

Structure

Complex

Sequence

CRLQLVVLCREDAHFIYENKDVSQ. .

Structure

Structure

%,

Y. G
§ fc._c
{ '; /

JFs!
& _H‘b

Structure +
- ;Molecule/

*

G
g6 e

'%f:a e/

L= N&

Structure +
Molecule/

R

Molecule

<R

Small
molecule
generation

Small
molecule
docking

QSAR/Proper
ty Prediction

Synthesis
prediction

Synthesis

A+B+C= =R

VANTAI



However, this is wasteful and [imiting

* Models re-learn same things anew (*grammar” of natural sequence, physics of interactions,

generative process, ...)

» Different and small datasets used to re-learn across tasks

* In real life, we often want to "feed” models with whatever information we have

« Currently, this requires models to be chained or “hacked” to include information they are not trained

to use (e.g. MSA sampling in AF2), creating and compounding errors

0 VANTAI
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With AF3, all atoms of life (DNA, Protein, Molecules)

could be predicted for the first time

Protein
Monomer
Folding

AF1

End-to-end
All-Atom
Folding
End-to-end
Protein-only
Folding AF3
AF2

Generations
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Co-Folding:
Predict atomistic
structure given

sequence of
molecular tokens

VANTAI



The challenge Neo set out to solve:

Decade+ process of finding an
effective molecule

Sequence

¢MGRLQLVQ -

15+
years

VANTAI



Challenge: Design & decode medicines
atom-py-atom

(MGRLQLVQ -

1. Design 2. Decode

(Molecular generation) (Folding)

¥

VANTAI
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ANnd the next frontier was clear

All atom folding
& generation

The next frontier

End-to-end
All-Atom
Folding
End-to-end
Protein-only
Protein Folding AF3
Monomer
Hellellgle] AF2
AF1

Generations

VANTAI



Existing methods

Structure Small
Sequence | iilicture tg molecule
e Folding e 2 o3 '5&3 generatio
,:;,u.' ,{(((‘, oy ‘1"(( /
/T \1&3 X i

N=Y=Yo [=Yo

Sequence Structure &

@ Meriava genely
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ProMods: molecule defines T —

St r u Ct u re | order conversion
often doesn’t form stably in absence of drug

Molecule-induced
conformational shift
Molecule-induced interface

The Molecular Tweezer CLRO1 Stabilizes a Disordered Protein-

Pomalidomide-induced conformational shift of CRBN. Gabe
Lander, DFCI TPD Series, 2023 Protein Interface. Bier et al. JACS 2017

Protein-Protein & Protein-Ligand docking invalidly assume interface and monomers exist
stably without molecule — simultaneous co-folding & de-novo design required

2 VANTAI




Which of these two clAP-BTK Protein-interfaces
|S the rlg ht One’) Molecule-induced interface

o

/J’_ o~
J), ¥

W

B AP

BTK

Both! Depending on molecule

ews8i & 6w70
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Which of these two FKBP12-mTOR Protein-interfaces

|S -t h e rlg ht on e’) Molecule-induced interface
é§ g;é%@
IR ;
FKBPI2 J;Jl):\z;:
VS

Both! Depending on molecule

1FAP & 8PPZ
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De-novo design:

De-novo small molecule design still lag behind:

a) methods assume knowledge of bound-state
protein & b) struggle with valid designs

e 49 Sm 1 ) N “
Q SA 09 QRO (= A0 CEC: 056 SA 0.0
Ingainting-Ca (kc1) Reference (3kc1) / »
)

¥ ot N
ool Eall Vi@ o ida o
L 3’ L “ § i‘. __,/'
A ;-T:‘
Sm 023 Aroa: 68 Siemc 1

e 2 £ = - = § S i
Vs 65 Sm 027 Vs 63 Sm 019 Vine 64 Sm 00
D D44 S 033 SA 0N CEC 02

Structure-based Drug Design with Equivariant Diffusion
Models. Schneuing, ..., Bronstein, Correia. 2022
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a _ INntroducing

vant.ai/neo-1
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Introducing Neo-1. the worlds most advanced
atomistic foundation model|

Unified All-Atom
Generation and Folding

End-to-end
All-Atom
Folding
End-to-end
Protein-only
Protein Folding AF3
Monomer
Folding AF2
AF1

Generations

VANTAI
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